Google BigQuery is a fully managed, server
less, AI-ready data warehouse that enables scalable analysis over petabyte of data.
Configuring the Google BigQuery as a
source
Configure the read process in Google BigQuery
connector.
Table 1. Reading data from Google BigQuery
Read mode |
Procedure |
Call procedure statement |
- Specify the query timeout.
- Provide the SQL procedure statement.
|
General |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Specify the query timeout.
|
Select statement |
If you choose Use GCS staging:
- Specify the Google Cloud Storage bucket name.
- Specify the project ID.
- Enter a value of the Dataset name.
- Specify the query timeout.
- Provide the SQL select statement.
You can select the Enable partitioned reads option. |
Configuring the Google BigQuery as a
target
Configure the write process in Google BigQuery
connector.
Table 2. Writing data to Google BigQuery
Write mode |
Procedure |
Call procedure statement |
- Specify the project ID.
- Choose table action: Append, Replace, or Truncate.
- Specify key column names.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
- Provide the SQL procedure statement.
|
Delete |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Specify key column names.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
|
Delete then Insert |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Choose table action: Append, Replace, or Truncate.
- Specify key column names.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
|
Insert |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Choose table action: Append, Replace, or Truncate.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
|
Merge |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Choose table action: Append, Replace, or Truncate.
- Specify key column names.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
|
Streaming Insert |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Choose table action: Append, Replace, or Truncate.
|
Update |
- Specify the project ID.
- Enter a value of Dataset name and Table name.
- Specify key column names.
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
|
Update Statement |
- Specify the Google Cloud Storage name.
- Provide a file name prefix.
- Provide the SQL update statement.
|
Limitations
You can face some limitations while you use Google BigQuery connector.
- Google BigQuery reaches the limit of nested view
levels
While you run large DataStage flows in ELT mode, you can face the problem of reaching the
limit of nested view levels.
Google BigQuery
supports up to 16 levels of nested views. You can create views up to this limit, but querying is
limited to 15 levels. If the limit is exceeded, Google BigQuery returns an INVALID_INPUT
error.
For more information, see: Quotas
and limits reference (Google BigQuery).